Search results

Search for "strain sensor" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • , Technische Universität Darmstadt, 64287 Darmstadt, Germany 10.3762/bjnano.15.34 Abstract Strain sensors are sensitive to mechanical deformations and enable the detection of strain also within integrated electronics. For flexible displays, the use of a seamlessly integrated strain sensor would be beneficial
  • values. For larger strains, mechanisms such as grain rotation and the formation of nanocracks might contribute to the piezoresistive behavior in nanocrystalline graphene. Keywords: grain boundary; nanocrystalline graphene; strain sensor; Raman; tunneling and destruction; Introduction Flexible strain
PDF
Album
Full Research Paper
Published 08 Apr 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • demands of these applications [20]. Among various factors considered, the parameters of sensitivity and stretchability hold significant importance in determining the suitability of a strain sensor for practical applications. In recent years, scholars have acknowledged and addressed the aforementioned
  • challenge by focusing on the structural design of sensing materials in order to enhance both sensitivity and sensing range [21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36]. For instance, Lee et al. successfully developed a strain sensor by utilizing microcracks in a metal nanoparticle thin
  • film deposited on a microstructured polydimethylsiloxane (PDMS) substrate [21]. The sensor exhibits exceptional strain sensitivity, allowing for stretching of up to 20% strain. Liu et al. have successfully developed a strain sensor that exhibits high-performance characteristics [22]. A fish-scale-like
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • developed a smart textile garment by embedding a strain sensor into an ordinary garment. For the piezoelectric effect, the conductive blend was applied onto the fabric, which resulted in a change in resistance under strain. This phenomenon was used in gloves, car seats, and leotards for determining body
PDF
Album
Full Research Paper
Published 07 Feb 2022

Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor

  • Jianqi Dong,
  • Liang Chen,
  • Yuqing Yang and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1847–1853, doi:10.3762/bjnano.11.166

Graphical Abstract
  • synthesize AlGaN/AlN/GaN heterojunction NWs with controllable size. A single NW is transferred to a flexible poly(ethylene terephthalate) substrate and fixed by indium tin oxide electrodes to form an ohmic contact for the strain sensor. An external mechanical stress is introduced to study the performance of
  • the fabricated piezotronic strain sensor. The gauge factor is as high as 30 under compressive or tensile stress, which indicates a high sensitivity of the strain sensor. Periodic strain tests show the high stability and repeatability of the sensor. The working mechanism of the strain sensor is
  • investigated and systematically analyzed under compressive and tensile strain. Here, we describe a strain sensor that shows a great application potential in wearable integrated circuits, in health-monitoring devices, and in artificial intelligence. Keywords: AlGaN/AlN/GaN nanowires; flexible; piezotronic
PDF
Album
Full Research Paper
Published 10 Dec 2020

Angle-dependent structural colors in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint technology

  • Xu Zheng,
  • Qing Wang,
  • Jinjin Luan,
  • Yao Li,
  • Ning Wang and
  • Rui Zhang

Beilstein J. Nanotechnol. 2019, 10, 1211–1216, doi:10.3762/bjnano.10.120

Graphical Abstract
  • ][17][18][19]. Duempelmann et al. fabricated asymmetric periodic nanostructures to explore the effects of the optical properties on the structural color [20]. Then, they used the photonic crystal as a strain sensor by mechanically changing the structural period to achieve the different structural
PDF
Album
Full Research Paper
Published 11 Jun 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • 21500, P. R. China Research institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, 311215, P. R. China 10.3762/bjnano.10.47 Abstract A stable and highly sensitive graphene/hydrogel strain sensor is designed by introducing glycerol as a co-solvent in the formation of a hydrogel substrate and then
  • casting a graphene solution onto the hydrogel in a simple, two-step method. This hydrogel-based strain sensor can effectively retain water in the polymer network due to the formation of strong hydrogen bonding between glycerol and water. The addition of glycerol not only enhances the stability of the
  • sensor to be used in both stretching and bending modes. As a demonstration, the as-prepared strain sensor was applied to sense the movement of finger knuckles. Given the outstanding performance of this wearable sensor, together with the proposed scalable fabrication method, this stable and sensitive
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • spectroscopy; strain sensor; Introduction Many materials have been proposed for strain sensing applications including metals, silicon, carbon nanotubes and graphene. The unique thermal, mechanical and electrical properties of graphene [1] have inspired new and appealing applications in different fields. Its
  • strain gauge. These compounds have received significant interest not only for their high sensibility and tunability, but also for the potential for gauging strain that they offer in several biological systems. A highly stretchable and sensitive strain sensor based on reduced graphene oxide or graphene on
  • surface, combined with the shear stress, allowed for the uniform and continuous spreading of the graphite nanocrystals on the substrate surface with formation of a very uniform graphene multilayer coating. The electrical response to the mechanical deformation of a strain sensor is generally quantified by
PDF
Album
Full Research Paper
Published 03 Jan 2017

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • higher mode which was already noticed from Figure 6c. On the fifth mode, the strain sensor produces the same output for a much smaller deflection, yielding a much larger sensitivity. Noise analysis The noise performance of cantilever deflection sensors used in dynamic AFM is commonly evaluated with the
PDF
Album
Full Research Paper
Published 24 Feb 2016

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • ]. Therefore, we used such magnetic tunneling junctions with magnetostrictive electrodes deposited and patterned on Si substrates as strain sensor on AFM cantilevers. The Si substrates were structured into AFM cantilevers by means of microelectromechanical systems (MEMS) technology [35]. The magnetic tunneling
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities